Mean Value Theorems

IMPORTANT

Mean Value Theorems: Overview

This topic covers concepts, such as, Mean Value Theorems, Rolle's Theorem, Cauchy's Mean Value Theorem & Solving Inequalities Using LMVT etc.

Important Questions on Mean Value Theorems

HARD
IMPORTANT

The following function:   f( x )=sinx+cosx,x[ 0, π 2 ] is verifying which of the following rule or theorem:

MEDIUM
IMPORTANT

Show that between any two roots of the equation excosx=1 there exist atleast one root of exsinx-1=0.

HARD
IMPORTANT

The second derivative of function exists for all x0,1 such that f"x1. If f0=f1, then show that f'x<1 for all x0,1.

HARD
IMPORTANT

Let f:a,ba,b (where a<b and real numbers) be a differentiable non-linear function for which fa=b and fb=a. Then

HARD
IMPORTANT

Let fx be a function, continuous on a,b and twice differentiable on a,b consider the function ϕx=fb-fx-b-xf'x-b-x2AAR and Rolle's theorem is applicable for ϕx on a,b, then which of the following is/are true

MEDIUM
IMPORTANT

Let y=fx be a thrice differentiable function defined on R such that fx=0 has at least 5 distinct zeros, then minimum number of zeros of the equation fx+6f'x+12f"x+8f'''x=0 is

MEDIUM
IMPORTANT

Prove the following inequality using Lagrange's mean value theorem.

nln1+1n1   n1

EASY
IMPORTANT

Prove the following inequality using Lagrange's mean value theorem.

128<2813-3<127

EASY
IMPORTANT

Prove the following inequality using Lagrange's mean value theorem.

cosa-cosba-b

EASY
IMPORTANT

Prove the following inequality using Lagrange's mean value theorem.

sinx<x  xR+.

MEDIUM
IMPORTANT

Verify the Cauchy's mean value theorem for the functions

f(x)=1x, and g(x)=x2-4 on the interval 1,2.

MEDIUM
IMPORTANT

Check the validity of Cauchy's mean value theorem for the functions

f(x)=x3, and g(x)=x2 on the interval 0,2.

MEDIUM
IMPORTANT

Verify Cauchy's mean value theorem for the functions f(x)=sinx, and g(x)=cosx in 0,π2.

MEDIUM
IMPORTANT

Check the validity of Cauchy's mean value theorem for the functions

f(x)=x4, and g(x)=x2 on the interval 1,2.

HARD
IMPORTANT

 If fx=x-px-qx-r, where p<q<r, are real numbers, then the application of Rolle's theorem on f leads to

MEDIUM
IMPORTANT

Applying mean value theorem on f(x)=logex; x1,e the value of c=

MEDIUM
IMPORTANT

Function fx=1-x2 does not satisfies Rolle’s theorem in -1,1.

MEDIUM
IMPORTANT

The point on the curve y=x2, where the tangent is parallel to the line joining the points (1, 1) and (2, 4) is

MEDIUM
IMPORTANT

Function fx=x-1x-22 satisfies Rolle's theorem in 1,2.

MEDIUM
IMPORTANT

Function f(x)=x3+3x2-24x-80 does not satisfies Rolle’s theorem in -4,5.